Suche

UPD 163/17 - 02.11.2017                                 Meldung als pdf

Teilchendiffusion funktioniert anders als bisher angenommen

Der Physiker Peter Hänggi und seine Gruppe am Augsburger Lehrstuhl für Theoretische Physik I berichten in PNAS über die erstmals gelungene Quantifizierung hydrodynamischer Effekte beim Partikeltransport


ABCAugsburg/NIM/KPP – Der Transport von Partikeln durch Ionenkanäle und Nanoporen funktioniert anders als bisher angenommen. Ein Team um den Augsburger Physiker und NIM-Wissenschaftler Prof. Dr. Dr. h. c. mult. Peter Hänggi belegt diesen Durchbruch, der zum Überdenken bisheriger Modelle zwingt, mit Simulationen und Experimenten zur Teilchendiffusion in verschiedenen Kanalmodellen.

Bildunterschrift: Schematische Darstellung eines gewellten Kanals mit einem darin diffundierenden kugelförmigen Brownschen Kolloidteilchen (A). Das Strömungsfeld des Fluids, das durch die Zitterbewegung eines diffundierenden Teilchens erzeugt wird, variiert in Stärke und Richtung in Abhängigkeit davon, ob das Teilchen in einem Bereich weit offener Umgebung (B) oder im Bereich einer Engstelle (C) diffundiert. © Universität Augsburg (IfP)/PNAS

Diffusion ist allgegenwärtig. Ohne sie wären viele alltägliche Prozesse unmöglich. Vor allem für den Transport von sehr kleinen Partikeln spielt Diffusion eine zentrale Rolle. Mit der Erforschung der Brownschen Molekularbewegungen haben Einstein, Sutherland und Smoluchowski vor gut 110 Jahren den Grundstein für alle weitere Diffusionsforschung gelegt – auch für die des Augsburger Physikers Peter Hänggi, der mit seiner Forschungsgruppe jetzt in den renommierten „Proceedings of the National Academy of Sciences“ (PNAS) über die erstmals gelungene Einbeziehung hydrodynamischer Effekte in analytische Berechnungen der sogenannten „Brownschen Zitterbewegung“ berichtet.

Der Weg durch einen Kanal

Auf verschiedensten Felder von Physik und Chemie, insbesondere in der Biophysik ist die Frage, wie der Transport kleinster Teilchen durch natürliche oder künstliche Ionenkanäle und Nanoporen funktioniert, von größtem Interesse. All solchen Systemen ist gemeinsam, dass sie begrenzt sind, dass die entsprechenden Grenzflächen nie ganz glatt sind und dadurch auf molekularer Ebene den zick-zack Weg der Teilchen durch die Ionenkanäle oder Nanoporen, die zufällige Brownsche Zitterbewegung also, beeinflussen.

Entropische und hydrodynamische Wechselwirkungen

Da sind zum einen direkte Wechselwirkungen der Mikropartikel mit der Umgrenzung und der umgebenden Flüssigkeit, die – seien sie nun anziehender oder abstoßender Natur – die Transportgeschwindigkeit verändern. Zum anderen steht diesen hydrodynamischen Wechselwirkungen der sehr begrenzte Platz für Bewegungen entlang der Flussrichtung gegenüber, der den Weg und die Bewegung vorgibt und damit entropische Effekte auslöst. Nur diese entropischen Effekte konnten bislang in analytische Berechnungen mit einbezogen werden, ohne allerdings als solche allein das volle System widerspiegeln zu können, weil hier die hydrodynamischen Effekte unberücksichtigt bleiben. Letztere quantitativ zu beschreiben, galt bislang als beinahe unmöglich, da die allgegenwärtigen anziehenden und abstoßenden Wechselwirkungen bei unebenen Oberflächen extrem schwierig zu modellieren sind.

Zeit und Ort sind entscheidend

Die Betrachtung und Quantifizierung dieser hydrodynamischen Effekte sowohl in theoretischen Modellen als auch in praktischen Versuchen ist nun erstmals dem Augsburger Physiker Peter Hänggi und der Forschergruppe gelungen. Er und seine Forschergruppe am Augsburger Lehrstuhl für Theoretische Physik I konnten die mittlere Diffusionsgeschwindigkeit kugelförmiger Partikel bestimmten, indem sie diese in Wasser durch einen welligen Kanal diffundieren ließen.

Deutlich längere Diffusionszeit

Die dabei erzielten Ergebnisse zeigen, dass bisherige Modelle neu überdacht werden müssen. „Wir konnten zwar“, so Hänggi, „die entropische Theorie für Kanäle, deren Durchmesser deutlich größer ist als der der Partikel, bestätigen, zugleich aber die bisherigen Simulationen für enge Kanäle widerlegen. Denn hier hat der hydrodynamische Effekt entscheidenden Einfluss auf die Transportgeschwindigkeit von Teilchen. Es kann zu einer mittleren Diffusionszeit kommen, die etwa 40 Prozent länger ist als diejenige, die auf Grundlage der entropischen Theorie vorhergesagt wird. Wenn man allerdings als Maß für die Beweglichkeit der Teilchen den Stokes-Einsteinschen Diffusionskoeffizienten ersetzt durch einen experimentell bestimmten und kompliziert ortsabhängigen Diffusionskoeffizienten, der die komplexen hydrodynamischen Wechselwirkungen der unebenen Oberfläche berücksichtigt, dann lässt sich die entropische Theorie erstaunlicherweise in guter Übereinstimmung mit diesen experimentellen Daten auf enge Kanäle anwenden.“

Die Forschungsarbeiten erfolgten im Rahmen des Exzellenzclusters Nanosystems Initiative Munich (NIM). Siehe http://www.nano-initiative-munich.de/

_____________________________

Publikation:

Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels.
Yang X, Liu C, Li Y, Marchesoni F, Hänggi P, Zhang HP.
PNAS 2017 Sep 5;114(36):9564-9569. DOI: 10.1073/pnas.1707815114
http://www.pnas.org/content/114/36/9564.abstract

_____________________________

Bildmaterial zu dieser Pressemitteilung:

http://www.presse.uni-augsburg.de/de/unipressedienst/2017/okt-dez/2017_163
http://idw-online.de/de/image?id=294293
http://idw-online.de/de/image?id=294294

_____________________________

Englischsprachige Version dieser Pressemitteilung:

http://idw-online.de/de/news683932

_____________________________

Kontakt:

Prof. Dr. Dr. h. c. mult. Peter Hänggi
Lehrstuhl für Theoretische Physik I
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon: +49(0)821-598-3250
Hanggi@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/theo1/hanggi/

_____________________________

Pressebild zum Download:

ABCBildunterschrift: Schematische Darstellung eines gewellten Kanals mit einem darin diffundierenden kugelförmigen Brownschen Kolloidteilchen (A). Das Strömungsfeld des Fluids, das durch die Zitterbewegung eines diffundierenden Teilchens erzeugt wird, variiert in Stärke und Richtung in Abhängigkeit davon, ob das Teilchen in einem Bereich weit offener Umgebung (B) oder im Bereich einer Engstelle (C) diffundiert. © Universität Augsburg (IfP)/PNAS