Suche

UPD 138/12 - 12.08.2012

Neuer Weg zu simultanem Auftreten von Ferroelektrizität und Magnetismus in einem organischen Material

In einem soeben erschienenen Beitrag im renommierten Fachjournal "Nature Materials" berichten Forscher der Universitäten Augsburg und Frankfurt/M. über einen neuartigen Mechanismus in einem organischen Material, der zu simultaner magnetischer und ferroelektrischer Ordnung führt.


Augsburg/Frankfurt am Main/PL/KPP - Materialien, die verschiedene Arten "ferroischer" Ordnung kombinieren, sogenannte Multiferroika, könnten einen Quantensprung für die Zukunft der Elektronik bedeuten, insbesondere in der elektronischen Schaltungs-, Sensor- und Speichertechnologie. Denn in Multiferroika treten Magnetismus (die Ausrichtung mikroskopischer Magnete) und Ferroelektrizität (die Ausrichtung elektrischer Dipole) simultan auf. In ihrem soeben in Nature Materials erschienenen Beitrag "Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole driven magnetism" berichten nun die Arbeitsgruppen von Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer (Universität Augsburg) sowie von Prof. Dr. Jens Müller und Prof. Dr. Michael Lang (Goethe-Universität Frankfurt) von einer überraschenden Entdeckung: Es ist ihnen gelungen, Multiferroizität erstmals in einem Ladungstransfersalz - in einem organischen (kohlenstoffbasierten) Festkörper also - nachzuweisen und damit eine neue Klasse multiferroischer Materialien zu erschließen.

Eine Überraschung in gut bekannten Materialien

Überraschend ist diese Entdeckung, weil Ladungstransfersalze an sich schon seit langem bekannt und in der Grundlagenforschung Gegenstand intensiver Untersuchungen sind. Diese Materialien weisen eine erstaunliche Fülle interessanter physikalischer Phänomene auf, so etwa Supraleitung, magnetisch- oder ladungsgeordnete Zustände und Metall-Isolator-Übergänge. Solche Phänomene werden in Augsburg und Frankfurt im Rahmen der DFG-Sonderforschungsbereiche/TRR "From Electronic Correlations to Functionality" und "Condensed Matter Systems with Variable Many-Body Interactions" untersucht.

Die ferroelektrische ermöglicht erst die magnetische Ordnung

Was die Augsburger und Frankfurter Physiker entdeckt haben, ist insofern spektakulär, als in dem untersuchten Material ein neuer Mechanismus auftritt, bei dem die ferroelektrische Ordnung die magnetische überhaupt erst möglich macht: Durch eine zunächst auftretende Ordnung von Elektronen werden konkurrierende magnetische Wechselwirkungen unterdrückt, die zuvor das spontane Ordnen der magnetischen Momente behindert haben. Und durch diese Unterdrückung wird die antiferromagnetische, also antiparallele Ausrichtung dieser Momente ermöglicht.

Hochrelevant für künftige Elektronik-Anwendungen

Inzwischen arbeiten die Augsburger und Frankfurter Physiker bereits daran, diese neuartigen multiferroischen Eigenschaften in einem organischen Material im Detail zu verstehen und eine mögliche Wechselwirkung zwischen elektrischer und magnetischer Ordnung nachzuweisen. Eine solche Wechselwirkung wäre für mögliche Anwendungen insbesondere in der elektronischen Schaltungs-, Sensor- und Speichertechnologie von hoher Relevanz.
_______________________________________

Originalbeitrag:

Peter Lunkenheimer, Jens Müller, Stephan Krohns, Florian Schrettle, Alois Loidl, Benedikt Hartmann, Robert Rommel, Mariano de Souza, Chisa Hotta, John A. Schlueter, Michael Lang: "Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole driven magnetism". - http://dx.doi.org/10.1038/NMAT3400
_______________________________________

Ansprechpartner in Augsburg:

Lehrstuhl für Experimentalphysik V/EKM, Universität Augsburg
Universitätsstraße 1, 86159 Augsburg
http://www.physik.uni-augsburg.de/exp5/

Ansprechpartner in Frankfurt am Main:

Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main
Max-von-Laue-Straße 1, 60438 Frankfurt am Main
http://www.pi.physik.uni-frankfurt.de/index.html